3.1.15 \(\int \text {csch}^3(c+d x) (a+b \tanh ^2(c+d x))^2 \, dx\) [15]

Optimal. Leaf size=82 \[ \frac {a (a-4 b) \tanh ^{-1}(\cosh (c+d x))}{2 d}-\frac {a (a-4 b) \text {sech}(c+d x)}{2 d}-\frac {a^2 \text {csch}^2(c+d x) \text {sech}(c+d x)}{2 d}-\frac {b^2 \text {sech}^3(c+d x)}{3 d} \]

[Out]

1/2*a*(a-4*b)*arctanh(cosh(d*x+c))/d-1/2*a*(a-4*b)*sech(d*x+c)/d-1/2*a^2*csch(d*x+c)^2*sech(d*x+c)/d-1/3*b^2*s
ech(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3745, 474, 470, 327, 213} \begin {gather*} -\frac {a^2 \text {csch}^2(c+d x) \text {sech}(c+d x)}{2 d}-\frac {a (a-4 b) \text {sech}(c+d x)}{2 d}+\frac {a (a-4 b) \tanh ^{-1}(\cosh (c+d x))}{2 d}-\frac {b^2 \text {sech}^3(c+d x)}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^3*(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

(a*(a - 4*b)*ArcTanh[Cosh[c + d*x]])/(2*d) - (a*(a - 4*b)*Sech[c + d*x])/(2*d) - (a^2*Csch[c + d*x]^2*Sech[c +
 d*x])/(2*d) - (b^2*Sech[c + d*x]^3)/(3*d)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 474

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(-(b*c - a*
d)^2)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b^2*e*n*(p + 1))), x] + Dist[1/(a*b^2*n*(p + 1)), Int[(e*x)^m*(a +
 b*x^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 1)*x^n, x], x], x] /; FreeQ[{a
, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1]

Rule 3745

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m
 + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \text {csch}^3(c+d x) \left (a+b \tanh ^2(c+d x)\right )^2 \, dx &=-\frac {\text {Subst}\left (\int \frac {x^2 \left (a+b-b x^2\right )^2}{\left (-1+x^2\right )^2} \, dx,x,\text {sech}(c+d x)\right )}{d}\\ &=-\frac {a^2 \text {csch}^2(c+d x) \text {sech}(c+d x)}{2 d}-\frac {\text {Subst}\left (\int \frac {x^2 \left (3 a^2-2 (a+b)^2+2 b^2 x^2\right )}{-1+x^2} \, dx,x,\text {sech}(c+d x)\right )}{2 d}\\ &=-\frac {a^2 \text {csch}^2(c+d x) \text {sech}(c+d x)}{2 d}-\frac {b^2 \text {sech}^3(c+d x)}{3 d}-\frac {(a (a-4 b)) \text {Subst}\left (\int \frac {x^2}{-1+x^2} \, dx,x,\text {sech}(c+d x)\right )}{2 d}\\ &=-\frac {a (a-4 b) \text {sech}(c+d x)}{2 d}-\frac {a^2 \text {csch}^2(c+d x) \text {sech}(c+d x)}{2 d}-\frac {b^2 \text {sech}^3(c+d x)}{3 d}-\frac {(a (a-4 b)) \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\text {sech}(c+d x)\right )}{2 d}\\ &=\frac {a (a-4 b) \tanh ^{-1}(\cosh (c+d x))}{2 d}-\frac {a (a-4 b) \text {sech}(c+d x)}{2 d}-\frac {a^2 \text {csch}^2(c+d x) \text {sech}(c+d x)}{2 d}-\frac {b^2 \text {sech}^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.03, size = 96, normalized size = 1.17 \begin {gather*} -\frac {3 a^2 \text {csch}^2\left (\frac {1}{2} (c+d x)\right )+12 a^2 \log \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )-48 a b \log \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )+3 a^2 \text {sech}^2\left (\frac {1}{2} (c+d x)\right )-48 a b \text {sech}(c+d x)+8 b^2 \text {sech}^3(c+d x)}{24 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^3*(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

-1/24*(3*a^2*Csch[(c + d*x)/2]^2 + 12*a^2*Log[Tanh[(c + d*x)/2]] - 48*a*b*Log[Tanh[(c + d*x)/2]] + 3*a^2*Sech[
(c + d*x)/2]^2 - 48*a*b*Sech[c + d*x] + 8*b^2*Sech[c + d*x]^3)/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(238\) vs. \(2(74)=148\).
time = 2.74, size = 239, normalized size = 2.91

method result size
risch \(-\frac {{\mathrm e}^{d x +c} \left (3 a^{2} {\mathrm e}^{8 d x +8 c}-12 a b \,{\mathrm e}^{8 d x +8 c}+12 a^{2} {\mathrm e}^{6 d x +6 c}+8 b^{2} {\mathrm e}^{6 d x +6 c}+18 a^{2} {\mathrm e}^{4 d x +4 c}+24 a b \,{\mathrm e}^{4 d x +4 c}-16 b^{2} {\mathrm e}^{4 d x +4 c}+12 a^{2} {\mathrm e}^{2 d x +2 c}+8 b^{2} {\mathrm e}^{2 d x +2 c}+3 a^{2}-12 a b \right )}{3 d \left ({\mathrm e}^{2 d x +2 c}-1\right )^{2} \left (1+{\mathrm e}^{2 d x +2 c}\right )^{3}}+\frac {a^{2} \ln \left ({\mathrm e}^{d x +c}+1\right )}{2 d}-\frac {2 a b \ln \left ({\mathrm e}^{d x +c}+1\right )}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{d x +c}-1\right )}{2 d}+\frac {2 a b \ln \left ({\mathrm e}^{d x +c}-1\right )}{d}\) \(239\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^3*(a+b*tanh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

-1/3*exp(d*x+c)*(3*a^2*exp(8*d*x+8*c)-12*a*b*exp(8*d*x+8*c)+12*a^2*exp(6*d*x+6*c)+8*b^2*exp(6*d*x+6*c)+18*a^2*
exp(4*d*x+4*c)+24*a*b*exp(4*d*x+4*c)-16*b^2*exp(4*d*x+4*c)+12*a^2*exp(2*d*x+2*c)+8*b^2*exp(2*d*x+2*c)+3*a^2-12
*a*b)/d/(exp(2*d*x+2*c)-1)^2/(1+exp(2*d*x+2*c))^3+1/2*a^2/d*ln(exp(d*x+c)+1)-2*a*b/d*ln(exp(d*x+c)+1)-1/2*a^2/
d*ln(exp(d*x+c)-1)+2*a*b/d*ln(exp(d*x+c)-1)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 181 vs. \(2 (74) = 148\).
time = 0.27, size = 181, normalized size = 2.21 \begin {gather*} \frac {1}{2} \, a^{2} {\left (\frac {\log \left (e^{\left (-d x - c\right )} + 1\right )}{d} - \frac {\log \left (e^{\left (-d x - c\right )} - 1\right )}{d} + \frac {2 \, {\left (e^{\left (-d x - c\right )} + e^{\left (-3 \, d x - 3 \, c\right )}\right )}}{d {\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} - e^{\left (-4 \, d x - 4 \, c\right )} - 1\right )}}\right )} - 2 \, a b {\left (\frac {\log \left (e^{\left (-d x - c\right )} + 1\right )}{d} - \frac {\log \left (e^{\left (-d x - c\right )} - 1\right )}{d} - \frac {2 \, e^{\left (-d x - c\right )}}{d {\left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}}\right )} - \frac {8 \, b^{2}}{3 \, d {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^3*(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

1/2*a^2*(log(e^(-d*x - c) + 1)/d - log(e^(-d*x - c) - 1)/d + 2*(e^(-d*x - c) + e^(-3*d*x - 3*c))/(d*(2*e^(-2*d
*x - 2*c) - e^(-4*d*x - 4*c) - 1))) - 2*a*b*(log(e^(-d*x - c) + 1)/d - log(e^(-d*x - c) - 1)/d - 2*e^(-d*x - c
)/(d*(e^(-2*d*x - 2*c) + 1))) - 8/3*b^2/(d*(e^(d*x + c) + e^(-d*x - c))^3)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2462 vs. \(2 (74) = 148\).
time = 0.36, size = 2462, normalized size = 30.02 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^3*(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

-1/6*(6*(a^2 - 4*a*b)*cosh(d*x + c)^9 + 54*(a^2 - 4*a*b)*cosh(d*x + c)*sinh(d*x + c)^8 + 6*(a^2 - 4*a*b)*sinh(
d*x + c)^9 + 8*(3*a^2 + 2*b^2)*cosh(d*x + c)^7 + 8*(27*(a^2 - 4*a*b)*cosh(d*x + c)^2 + 3*a^2 + 2*b^2)*sinh(d*x
 + c)^7 + 56*(9*(a^2 - 4*a*b)*cosh(d*x + c)^3 + (3*a^2 + 2*b^2)*cosh(d*x + c))*sinh(d*x + c)^6 + 4*(9*a^2 + 12
*a*b - 8*b^2)*cosh(d*x + c)^5 + 4*(189*(a^2 - 4*a*b)*cosh(d*x + c)^4 + 42*(3*a^2 + 2*b^2)*cosh(d*x + c)^2 + 9*
a^2 + 12*a*b - 8*b^2)*sinh(d*x + c)^5 + 4*(189*(a^2 - 4*a*b)*cosh(d*x + c)^5 + 70*(3*a^2 + 2*b^2)*cosh(d*x + c
)^3 + 5*(9*a^2 + 12*a*b - 8*b^2)*cosh(d*x + c))*sinh(d*x + c)^4 + 8*(3*a^2 + 2*b^2)*cosh(d*x + c)^3 + 8*(63*(a
^2 - 4*a*b)*cosh(d*x + c)^6 + 35*(3*a^2 + 2*b^2)*cosh(d*x + c)^4 + 5*(9*a^2 + 12*a*b - 8*b^2)*cosh(d*x + c)^2
+ 3*a^2 + 2*b^2)*sinh(d*x + c)^3 + 8*(27*(a^2 - 4*a*b)*cosh(d*x + c)^7 + 21*(3*a^2 + 2*b^2)*cosh(d*x + c)^5 +
5*(9*a^2 + 12*a*b - 8*b^2)*cosh(d*x + c)^3 + 3*(3*a^2 + 2*b^2)*cosh(d*x + c))*sinh(d*x + c)^2 + 6*(a^2 - 4*a*b
)*cosh(d*x + c) - 3*((a^2 - 4*a*b)*cosh(d*x + c)^10 + 10*(a^2 - 4*a*b)*cosh(d*x + c)*sinh(d*x + c)^9 + (a^2 -
4*a*b)*sinh(d*x + c)^10 + (a^2 - 4*a*b)*cosh(d*x + c)^8 + (45*(a^2 - 4*a*b)*cosh(d*x + c)^2 + a^2 - 4*a*b)*sin
h(d*x + c)^8 + 8*(15*(a^2 - 4*a*b)*cosh(d*x + c)^3 + (a^2 - 4*a*b)*cosh(d*x + c))*sinh(d*x + c)^7 - 2*(a^2 - 4
*a*b)*cosh(d*x + c)^6 + 2*(105*(a^2 - 4*a*b)*cosh(d*x + c)^4 + 14*(a^2 - 4*a*b)*cosh(d*x + c)^2 - a^2 + 4*a*b)
*sinh(d*x + c)^6 + 4*(63*(a^2 - 4*a*b)*cosh(d*x + c)^5 + 14*(a^2 - 4*a*b)*cosh(d*x + c)^3 - 3*(a^2 - 4*a*b)*co
sh(d*x + c))*sinh(d*x + c)^5 - 2*(a^2 - 4*a*b)*cosh(d*x + c)^4 + 2*(105*(a^2 - 4*a*b)*cosh(d*x + c)^6 + 35*(a^
2 - 4*a*b)*cosh(d*x + c)^4 - 15*(a^2 - 4*a*b)*cosh(d*x + c)^2 - a^2 + 4*a*b)*sinh(d*x + c)^4 + 8*(15*(a^2 - 4*
a*b)*cosh(d*x + c)^7 + 7*(a^2 - 4*a*b)*cosh(d*x + c)^5 - 5*(a^2 - 4*a*b)*cosh(d*x + c)^3 - (a^2 - 4*a*b)*cosh(
d*x + c))*sinh(d*x + c)^3 + (a^2 - 4*a*b)*cosh(d*x + c)^2 + (45*(a^2 - 4*a*b)*cosh(d*x + c)^8 + 28*(a^2 - 4*a*
b)*cosh(d*x + c)^6 - 30*(a^2 - 4*a*b)*cosh(d*x + c)^4 - 12*(a^2 - 4*a*b)*cosh(d*x + c)^2 + a^2 - 4*a*b)*sinh(d
*x + c)^2 + a^2 - 4*a*b + 2*(5*(a^2 - 4*a*b)*cosh(d*x + c)^9 + 4*(a^2 - 4*a*b)*cosh(d*x + c)^7 - 6*(a^2 - 4*a*
b)*cosh(d*x + c)^5 - 4*(a^2 - 4*a*b)*cosh(d*x + c)^3 + (a^2 - 4*a*b)*cosh(d*x + c))*sinh(d*x + c))*log(cosh(d*
x + c) + sinh(d*x + c) + 1) + 3*((a^2 - 4*a*b)*cosh(d*x + c)^10 + 10*(a^2 - 4*a*b)*cosh(d*x + c)*sinh(d*x + c)
^9 + (a^2 - 4*a*b)*sinh(d*x + c)^10 + (a^2 - 4*a*b)*cosh(d*x + c)^8 + (45*(a^2 - 4*a*b)*cosh(d*x + c)^2 + a^2
- 4*a*b)*sinh(d*x + c)^8 + 8*(15*(a^2 - 4*a*b)*cosh(d*x + c)^3 + (a^2 - 4*a*b)*cosh(d*x + c))*sinh(d*x + c)^7
- 2*(a^2 - 4*a*b)*cosh(d*x + c)^6 + 2*(105*(a^2 - 4*a*b)*cosh(d*x + c)^4 + 14*(a^2 - 4*a*b)*cosh(d*x + c)^2 -
a^2 + 4*a*b)*sinh(d*x + c)^6 + 4*(63*(a^2 - 4*a*b)*cosh(d*x + c)^5 + 14*(a^2 - 4*a*b)*cosh(d*x + c)^3 - 3*(a^2
 - 4*a*b)*cosh(d*x + c))*sinh(d*x + c)^5 - 2*(a^2 - 4*a*b)*cosh(d*x + c)^4 + 2*(105*(a^2 - 4*a*b)*cosh(d*x + c
)^6 + 35*(a^2 - 4*a*b)*cosh(d*x + c)^4 - 15*(a^2 - 4*a*b)*cosh(d*x + c)^2 - a^2 + 4*a*b)*sinh(d*x + c)^4 + 8*(
15*(a^2 - 4*a*b)*cosh(d*x + c)^7 + 7*(a^2 - 4*a*b)*cosh(d*x + c)^5 - 5*(a^2 - 4*a*b)*cosh(d*x + c)^3 - (a^2 -
4*a*b)*cosh(d*x + c))*sinh(d*x + c)^3 + (a^2 - 4*a*b)*cosh(d*x + c)^2 + (45*(a^2 - 4*a*b)*cosh(d*x + c)^8 + 28
*(a^2 - 4*a*b)*cosh(d*x + c)^6 - 30*(a^2 - 4*a*b)*cosh(d*x + c)^4 - 12*(a^2 - 4*a*b)*cosh(d*x + c)^2 + a^2 - 4
*a*b)*sinh(d*x + c)^2 + a^2 - 4*a*b + 2*(5*(a^2 - 4*a*b)*cosh(d*x + c)^9 + 4*(a^2 - 4*a*b)*cosh(d*x + c)^7 - 6
*(a^2 - 4*a*b)*cosh(d*x + c)^5 - 4*(a^2 - 4*a*b)*cosh(d*x + c)^3 + (a^2 - 4*a*b)*cosh(d*x + c))*sinh(d*x + c))
*log(cosh(d*x + c) + sinh(d*x + c) - 1) + 2*(27*(a^2 - 4*a*b)*cosh(d*x + c)^8 + 28*(3*a^2 + 2*b^2)*cosh(d*x +
c)^6 + 10*(9*a^2 + 12*a*b - 8*b^2)*cosh(d*x + c)^4 + 12*(3*a^2 + 2*b^2)*cosh(d*x + c)^2 + 3*a^2 - 12*a*b)*sinh
(d*x + c))/(d*cosh(d*x + c)^10 + 10*d*cosh(d*x + c)*sinh(d*x + c)^9 + d*sinh(d*x + c)^10 + d*cosh(d*x + c)^8 +
 (45*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^8 + 8*(15*d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x + c)^7 - 2*d
*cosh(d*x + c)^6 + 2*(105*d*cosh(d*x + c)^4 + 14*d*cosh(d*x + c)^2 - d)*sinh(d*x + c)^6 + 4*(63*d*cosh(d*x + c
)^5 + 14*d*cosh(d*x + c)^3 - 3*d*cosh(d*x + c))*sinh(d*x + c)^5 - 2*d*cosh(d*x + c)^4 + 2*(105*d*cosh(d*x + c)
^6 + 35*d*cosh(d*x + c)^4 - 15*d*cosh(d*x + c)^2 - d)*sinh(d*x + c)^4 + 8*(15*d*cosh(d*x + c)^7 + 7*d*cosh(d*x
 + c)^5 - 5*d*cosh(d*x + c)^3 - d*cosh(d*x + c))*sinh(d*x + c)^3 + d*cosh(d*x + c)^2 + (45*d*cosh(d*x + c)^8 +
 28*d*cosh(d*x + c)^6 - 30*d*cosh(d*x + c)^4 - 12*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^2 + 2*(5*d*cosh(d*x + c
)^9 + 4*d*cosh(d*x + c)^7 - 6*d*cosh(d*x + c)^5 - 4*d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x + c) + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2} \operatorname {csch}^{3}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**3*(a+b*tanh(d*x+c)**2)**2,x)

[Out]

Integral((a + b*tanh(c + d*x)**2)**2*csch(c + d*x)**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 153 vs. \(2 (74) = 148\).
time = 0.45, size = 153, normalized size = 1.87 \begin {gather*} -\frac {\frac {12 \, a^{2} {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}}{{\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{2} - 4} - 3 \, {\left (a^{2} - 4 \, a b\right )} \log \left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )} + 2\right ) + 3 \, {\left (a^{2} - 4 \, a b\right )} \log \left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )} - 2\right ) - \frac {16 \, {\left (3 \, a b {\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{2} - 2 \, b^{2}\right )}}{{\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{3}}}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^3*(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

-1/12*(12*a^2*(e^(d*x + c) + e^(-d*x - c))/((e^(d*x + c) + e^(-d*x - c))^2 - 4) - 3*(a^2 - 4*a*b)*log(e^(d*x +
 c) + e^(-d*x - c) + 2) + 3*(a^2 - 4*a*b)*log(e^(d*x + c) + e^(-d*x - c) - 2) - 16*(3*a*b*(e^(d*x + c) + e^(-d
*x - c))^2 - 2*b^2)/(e^(d*x + c) + e^(-d*x - c))^3)/d

________________________________________________________________________________________

Mupad [B]
time = 0.16, size = 261, normalized size = 3.18 \begin {gather*} \frac {\mathrm {atan}\left (\frac {{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\left (a^2\,\sqrt {-d^2}-4\,a\,b\,\sqrt {-d^2}\right )}{d\,\sqrt {a^4-8\,a^3\,b+16\,a^2\,b^2}}\right )\,\sqrt {a^4-8\,a^3\,b+16\,a^2\,b^2}}{\sqrt {-d^2}}+\frac {8\,b^2\,{\mathrm {e}}^{c+d\,x}}{3\,d\,\left (3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1\right )}-\frac {a^2\,{\mathrm {e}}^{c+d\,x}}{d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}-1\right )}-\frac {2\,a^2\,{\mathrm {e}}^{c+d\,x}}{d\,\left ({\mathrm {e}}^{4\,c+4\,d\,x}-2\,{\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}-\frac {8\,b^2\,{\mathrm {e}}^{c+d\,x}}{3\,d\,\left (2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1\right )}+\frac {4\,a\,b\,{\mathrm {e}}^{c+d\,x}}{d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tanh(c + d*x)^2)^2/sinh(c + d*x)^3,x)

[Out]

(atan((exp(d*x)*exp(c)*(a^2*(-d^2)^(1/2) - 4*a*b*(-d^2)^(1/2)))/(d*(a^4 - 8*a^3*b + 16*a^2*b^2)^(1/2)))*(a^4 -
 8*a^3*b + 16*a^2*b^2)^(1/2))/(-d^2)^(1/2) + (8*b^2*exp(c + d*x))/(3*d*(3*exp(2*c + 2*d*x) + 3*exp(4*c + 4*d*x
) + exp(6*c + 6*d*x) + 1)) - (a^2*exp(c + d*x))/(d*(exp(2*c + 2*d*x) - 1)) - (2*a^2*exp(c + d*x))/(d*(exp(4*c
+ 4*d*x) - 2*exp(2*c + 2*d*x) + 1)) - (8*b^2*exp(c + d*x))/(3*d*(2*exp(2*c + 2*d*x) + exp(4*c + 4*d*x) + 1)) +
 (4*a*b*exp(c + d*x))/(d*(exp(2*c + 2*d*x) + 1))

________________________________________________________________________________________